

CRA_Eval_Report v4 bjb.doc Page 1 of 20 Source: HRL LLC

RAYTHEON INTEGRATED DEFENSE SYSTEMS

50 Apple Hill Drive

Tewksbury, MA 01876

Composite Combat Identification (CCID)

Common Reasoning Algorithm Development

Program

CDRL A005 - CRA Evaluation Report

Date: 1/20/05

Prime Contract: N00014-04-C-0453

Prepared for:

Office of Naval Research

Ballston Tower One

800 North Quincy St

Arlington, VA 22217-5660

Attn: Ed Khoury, PMR-51

UNCLASSIFIED

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
20 JAN 2005

2. REPORT TYPE
N/A

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
Composite Combat Identification (CCID) Common Reasoning
Algorithm Development Program

5a. CONTRACT NUMBER
N00014-04-C-0453

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Raytheon Integrated Defense Systems, 50 Apple Hill Drive, Tewksbury,
MA 01876

8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
Ed Khoury, PMR-51, The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION
OF ABSTRACT

UU

18. NUMBER
OF PAGES

20

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

CRA_Eval_Report v4 bjb.doc Page 2 of 20 Source: HRL LLC

CURRENT MONTH CUMULATIVE

Total Contract Value at Sell $ 333,047
Total Funded Value to date at Sell $ 333,047

Total Hours N/A N/A
Total Labor to date at Sell N/A N/A
Total Material to date at Sell N/A N/A
Total ODC to date at Sell N/A N/A
Purchase Order Commitments at Sell N/A N/A
Total Actuals and Commitments at Sell N/A N/A

Actuals are reported as of Raytheon fiscal month end.

Financial Status - As of 8/22/2004

CCID Common Reasoning Algorithm Development

CRA_Eval_Report v4 bjb.doc Page 3 of 20 Source: HRL LLC

CRA Evaluation Report
January 20, 2005

1 Introduction
This report presents the CRA (the CCID Common Reasoning Algorithm) Evaluation
activity and its findings for the ONR CRA Development program, for which Raytheon is
the prime contractor and HRL is a subcontractor responsible for the evaluation task. The
CRA is a new implementation of the CCID algorithm called CIDER developed by
Raytheon/HRL under ONR CCID Phase-I program. Like CIDER, CRA also contains an
ingest module and a Dempster-Shafer (D-S) engine. Functionally, the new CRA ingest
module replaces the CIDER ingest module, and the new CRA D-S engine replaces
HRL’s VBS Kernel D-S engine used in CCID Phase-I. The two parts of the system use
the same interface protocol and are interchangeable.

The goal of the evaluation task is to evaluate the performance of the new CRA (ingest
module and D-S engine) to verify that the new CRA matches or out-performs CIDER.

The remainder of this report is organized as follows:

 Section Title Page

2 Summary of the Evaluation Results.................................... 10

3 Scope of the Evaluation .. 14

4 Overview of Evaluation Methods 18

5 CID Performance Evaluation.. 50

6 Run Log Comparisons .. 82

7 Run-Time, Memory and Processor Usage 95

8 Conclusion .. 98

2 Summary of the Evaluation Results
The evaluation of the CRA is conducted conceptually in two parts, the evaluation of the
CRA D-S engine, and the evaluation of the new ingest module. For the evaluation of the
CRA D-S engine, we use the original ingest module from CIDER ported to Unix
platform to ensure the output from the ingest module and hence input to the CRA D-S
engine are the same as that for the VBS Kernel. We were able to verify that the CRA D-S
engine produces exactly the same results as those from the VBS Kernel, except for some
difference due to random ordering, which does not affect algorithm performance for all
practical purposes.

After verifying that the CRA D-S engine is a functional replacement for the HRL VBS
Kernel prototype, we evaluated the CRA ingest module by running the CRA ingest
module and the CRA D-S engine together. We found that when running using the same
configuration and same knowledge base file, CRA matches CIDER exactly with identical
results as those from the VBS Kernel, except for some difference due to random ordering,

CRA_Eval_Report v4 bjb.doc Page 4 of 20 Source: HRL LLC

which does not affect algorithm performance for all practical purposes. However, CRA
ingest module contains bug fix to the original CIDER code. Formatting errors in the ID
knowledge base file was also discovered and fixed. Thus the results produced by the new
CRA operating in its normal configuration will produce slightly different numerical
results with comparable performance to that of CIDER.

Due to the use of advanced algorithms and code design for the CRA D-S engine, we also
see a significant reduction in CPU time and memory usage the CRA D-S engine achieved
as compared to the CIDER implementation.

Overall, we conclude that the CRA is a functional equivalent implementation of the
CIDER engine, only it is much fast and more memory efficient.

3 Scope of the Evaluation
The scope of this evaluation was to answer the following questions:

• Is the new CRA functionally equivalent to CIDER developed under CCID Phase-I
program?

• Is the new CRA able to achieve the same (or better) CID performance as CIDER,
according to the metrics defined by ONR during CCID Phase-I program?

The first question was easy to answer, as the new CRA follows the same design and
algorithm of CIDER, and uses exactly the same type of support files and interface
protocols. Therefore if we achieved the same CID performance, we would have reached a
positive conclusion. Therefore the effort for the evaluation was mainly focused on the
performance.

In terms of performance, this can be broken down into CID performance and run-time
performance. The CID performance can be measured by a set of performance metrics
defined by ONR. For run-time, we evaluate CRA’s CPU time, memory, and processor
usage.

4 Overview of Evaluation Methods

4.1 Evaluation Configurations
Figure 1 shows the software configuration for the CRA evaluation. The CRA consists of
the Ingest Module and the Demspter-Shafer (D-S) engine; both are developed under the
ONR CRA Development program. For comparison purpose, we also ran the same
software configuration as shown in Figure 1, but with the ingest module substituted by
the CIDER ingest module developed under the CCID Phase-I. This way, we could focus
our performance evaluation on each component of the new CRA.

CRA_Eval_Report v4 bjb.doc Page 5 of 20 Source: HRL LLC

Ingest
Module

D-S
Engine

Run LogRun Log Analysis
Tools

Analysis
Tools

DS3a
DS3d

ONR CCID
Data Sets

CRA

Figure 1. Block Diagram for CRA Evaluation Configuration

For CRA evaluation, we used the original data sets (DS3a & DS3d) as provided by ONR
during the ONR CCID Phase-I program. DS3d is the “test” set for CCID Phase-I and so
can be used to check the CID performance of the new CRA. DS3a is the most data
intensive set, and so is good for evaluating and comparing run-time performance.

The ID knowledge base and other supporting configuration files used for evaluation were
the same ones used during the CCID Phase-I. We collected the run logs, and used the
performance analysis tools (in Matlab) which were developed during CCID Phase-I. We
also developed additional tools to make direct log to log comparisons.

4.2 Hardware and Software Environment
All evaluation runs were conducted on a SunBlade-1000 workstation from Sun
Microsystems, with twin UltraSparc-III processors with 8MB external cache and 1GB of
RAM running at 750MHz.

The Sun workstation runs Solaris 8 (SunOS 5.8), which is compatible with Solaris 7 for
our evaluation purposes.

All software modules were compiled using GNU gcc/g++ version 3.4.2, except for
HRL’s VBS Kernel, which was compiled using Sun WorkShop “C” compiler version 6
update 1.

4.3 Baseline Algorithm: CIDER
The evaluation of CRA was driven by the requirements of the CRA Development
program, which were to match or do better in CID performance and accuracy than
achieved by CIDER as applied to the CCID Phase-I program. Therefore, our baseline
software is a version of the CIDER code (CIDER Ingest Module + HRL’s VBS Kernel)
ported to Unix (Solaris) platform. The support files (run-time configuration, ID
knowledge base, VBS network, and prior belief files) are the same as those used under
CCID Phase-I, except for minor reformatting to accommodate the differences between
Windows/DOS text files and those under Unix/Solaris.

CRA_Eval_Report v4 bjb.doc Page 6 of 20 Source: HRL LLC

4.4 Evaluation Methods
Our general evaluation procedure included the following steps:

1. Conduct test runs (including CRA and other configurations for comparison, see
Section 4.5) on the evaluation workstation;

2. Log results, run-time, memory, and processor utilization;

3. Run Matlab performance analysis tools, and compare the performance metrics;

4. Compare logs between different runs (baseline and new CRA runs), and collect
statistics of any difference.

In the following sub-sections, we give detailed description of each of the above
evaluation methods as a reference. First time readers may wish to skip the rest of this
section and proceed directly to the next section, and come back to this section for
explanation of the different evaluation methods.

4.4.1 CID performance comparison

CID performance are carried out using the performance metrics defined by ONR for
CCID Phase-I. These metrics are defined below in this section. The performance metrics
are computed for a given declaration threshold from the test run log files using a set of
Matlab tools developed in CCID Phase-I. Additional metrics that complements those
defined by ONR are also introduced in CCID Phase-I (e.g., error rate) used in plotting the
ROC-like curves for the CID performance.

There performance metrics defined by ONR for CCID Phase-I program are:

Accuracy = Q/N (also called Probability of Correct ID)

Reliability = Q/M

Completeness = M/N

where N is the track population, M is the number of declarations made, and Q is the
number of declarations that are correct, and N ≥ M ≥ Q. Note that the accuracy and
completeness measures penalize inaction. That is, if an algorithm is conservative in
making a declaration, it will not achieve better accuracy nor completeness. However,
reliability does not take into account of the track population, and only look at the portion
of the tracks that are being declared. Undeclared tracks have an ID state of PENDING.

In addition, we define an error measure to complement the above metrics:

Error = (M-Q)/N (also called Probability of False ID)

An ROC curve can be drawn by plotting Accuracy as a function of Error, as we vary
some system parameters, in our case, the decision threshold.

For the data sets for evaluation, only Target Type and Nationality truth are given.
Therefore all evaluations are based on the metrics for these two ID elements.

CRA_Eval_Report v4 bjb.doc Page 7 of 20 Source: HRL LLC

4.4.2 Log comparison

For run log comparisons, our primary purpose was to check if the CRA achieves literally
exactly the same results as CIDER did during Phase-I CCID program. In most situations,
this is only possible if we use the same software and hardware environments, as different
machines have different hardware architectures which may affect accuracy of numerical
computation. Different compilers also may result in different computation sequence for
the same task, potentially introducing further numerical differences.

To solve this issue, we produce the run logs without imposing declaration thresholds on
the (pignistic) probability1 values from the ID reasoning. Rather, the 2 top ranked (in
terms of probability value) recommendations are logged, and both the ID states and the
associated probability values are compared between different test runs. Because CIDER
and the new CRA logs the output in the same order as the input data, we can compare the
run logs line by line, and column by column to see if there are any differences. We
distinguish and report several different situations where the same line of the log file
corresponding to the same input from two different test runs might be different:

Case A: The two log files contain the same two top candidates, and their
probabilities are equal as well. However, the first candidate in one log file appear as
the second candidate in the other log file, therefore is considered different. This
case shows up because the two top candidates achieved the same probability in
both test runs, but were ordered differently randomly (we call it “random swap”)
due to platform/compiler differences or algorithm implementation. These situations
do not represent algorithm functional difference, and we should consider them as
“no difference”. In fact, when a proper declaration threshold is used, these cases
will fall into “no declaration” or pending, and the two test runs will then be
considered to have reached the same results. An example of Case A is shown in the
following table:

Case A
example

1st candidate
ID state

1st candidate
probability

2nd candidate
ID state

2nd candidate
probability

Log1 FRIEND 0.33 FOE 0.33
Log2 FOE 0.33 FRIEND 0.33

Case B: The two log files differ in the 1st candidate’s ID state, but it is not Case A.
In other words, the first candidate in the two log files are different in their ID state,
but it is not due to random swap when the probabilities of the top two candidates
are equal. This case is a real difference because if the probability values for the first
candidate exceed the set threshold, the declared ID from the two test runs will be
different. However, if the probability values are below the threshold, the declared
ID will still be the same (i.e., pending). Therefore this may or may not affect the
results for a specific threshold. Nevertheless, this situation shows that the two

1 The CIDER algorithm converts the Demspter-Shafer belief function into a probability form using a
transform called “pignistic” transform, which results in a pignistic probability. See [1] for more.

CRA_Eval_Report v4 bjb.doc Page 8 of 20 Source: HRL LLC

different runs reached different ID states, therefore should raise a warning. The
following table shows such an example.

Case B
example

1st candidate
ID state

1st candidate
probability

2nd candidate
ID state

2nd candidate
probability

Log1 FRIEND 0.5 FOE 0.2
Log2 FOE 0.35 FRIEND 0.35

In this example, the top two candidates from the two log files get swapped, but the
first candidates’ probabilities are different. The declared ID state could be different
when a threshold is applied.

Case C: The two log files differ only in the 2nd candidate’s ID state, while their
first candidates match. This case should be considered as “no difference” as it will
always result in the same declaration since the difference is in the 2nd candidate.
The cause of the difference in the 2nd candidate is most probably due to the random
swap between the 2nd and the 3rd candidates. This case is only for curiosity as it
may give us some clue of the inner workings of different algorithms. The following
table shows an example of Case C.

Case C
example

1st candidate
ID state

1st candidate
probability

2nd candidate
ID state

2nd candidate
probability

Log1 FRIEND 0.5 FOE 0.25
Log2 FRIEND 0.5 NEUTRAL 0.25

In summary, for log comparisons we are most concerned with the occurrence of Case B,
which indicates potentially true differences in the reasoning results. For comparing the
differences of numerical values, we consider any differences in absolute value small than
or equal to 1.0-E05 as no difference.

4.4.3 Run-time, memory and processor utilization

For run-time related measurements, since the evaluation workstation contains two CPUs,
the ingest module and the D-S engine tend to run on different CPUs concurrently. Our
evaluation on run-time performance (CPU time, memory and processor usage) was based
on the D-S engine, and not the ingest module because D-S engine is much more time and
memory intensive compared with the ingest module.

Run-time figures for the evaluation are obtained using two methods, Unix built-in
function “time” and Unix accounting logs. These two approaches gives very similar
results, therefore we do not distinguish them in this report.

4.5 Test Runs for the Evaluation
Table 1 shows a summary of four different test run configurations (simply referred to as
“test runs” for short here after) conducted during CRA evaluation. Each test run was also
carried out using DS3a and DS3d data sets. For “BAA Phase-I” we took the run logs
from CCID Phase-I program, and used them to compare to the CIDER ported to Unix.
This allowed us to “calibrate” the performance comparisons and log differences between
CIDER and the new CRA. For example, we wanted to make sure that the ported code of
CIDER achieved the same results as BAA Phase-I, but the run logs maybe slightly

CRA_Eval_Report v4 bjb.doc Page 9 of 20 Source: HRL LLC

different. We further compared the run logs and analyzed the differences to ensure any
differences in the results were truly irrelevant to CID performance.
Table 1. Summary of test runs conducted during CRA evaluation

Test Runs Description

BAA Phase-I

These are not actual test run during the evaluation. Rather the
run logs from CCID Phase-I program were used to compare
with other test runs. These logs were produced on a Windows
2000 platform during CCID Phase-I program in 2002.

CIDER Test runs using the original CCID reasoning engine developed
under CCID Phase-I, and ported to Unix/Solaris environment.

CRA1 Test runs using CIDER ingest module + the new CRA D-S
engine

CRA2
Test runs using the new CRA ingest module + the new CRA
D-S engine. It also contains some bug fixes (see Section 5.2.3
for details).

5 CID Performance Evaluation
The purpose of performance evaluation was to verify that under the same conditions and
declaration thresholds, CRA produces the same or equivalent performance as CIDER.

We conducted CID performance evaluation by evaluating the performance metrics for all
test runs first, then plotted and compared the ROC curves. We describe the results of
these activities in the following sections.

5.1 Performance Metrics
The performance metrics were evaluated for each test run against the data sets under a set
of declaration thresholds, which was the same as that used in CCID Phase-I for the
respective data sets.

Table 2 shows the performance metrics achieved from all test runs for DS3a and DS3d
All test runs which achieved the same performance metric values are grouped in the same
row.
Table 2. Performance metrics achieved for all test runs.

CRA20.6010.7300.9100.9630.5470.703

CRA1&2, CIDER,
BAA Phase-I

CRA1, CIDER,
BAA Phase-I

Test Runs
used

0.378

0.601

Type

0.938

0.899

Type NationNation

0.354

0.541

TypeNationTypeNation

0.57

0.55

Thresholds

0.60

0.55

0.6300.8880.559DS3d

0.7360.9630.709
DS3a

CompletenessReliability AccuracyTrack
Stat.

Data

CRA20.6010.7300.9100.9630.5470.703

CRA1&2, CIDER,
BAA Phase-I

CRA1, CIDER,
BAA Phase-I

Test Runs
used

0.378

0.601

Type

0.938

0.899

Type NationNation

0.354

0.541

TypeNationTypeNation

0.57

0.55

Thresholds

0.60

0.55

0.6300.8880.559DS3d

0.7360.9630.709
DS3a

CompletenessReliability AccuracyTrack
Stat.

Data

CRA_Eval_Report v4 bjb.doc Page 10 of 20 Source: HRL LLC

Table 3. The raw performance data used to compute the metrics shown in Table 2 for all
rest runs

CRA28110489108
CRA1&2, CIDER,

BAA Phase-I

CRA1, CIDER, BAA
Phase-I

Test Runs
used

45

80

TypeNation

47

89

TypeNation

127

148

Total
Tracks

7180DS3d

105109
DS3a

Total Correct Total DeclaredTrack
Stat.

Data

CRA28110489108
CRA1&2, CIDER,

BAA Phase-I

CRA1, CIDER, BAA
Phase-I

Test Runs
used

45

80

TypeNation

47

89

TypeNation

127

148

Total
Tracks

7180DS3d

105109
DS3a

Total Correct Total DeclaredTrack
Stat.

Data

Table 3 shows the raw performance numbers achieved which were used for calculating
the metric values shown in Table 2 as defined in Section 4.4.1. For example, accuracy (or
probability of correct ID) for Nationality on DS3d in Table 2 is calculated by dividing the
total correct declaration (71) by the total number of tracks (127): 71/127=0.559.

From the results presented in Table 2 and Table 3, we can see that CRA1 (testing the
CRA D-S engine) and CRA2 (testing the combined CRA ingest module and D-S engine)
matches the results of CIDER from BAA Phase-I on DS3d. For DS3a, CRA2 produces
slightly different results (slightly better in Target Type, and slightly worse in Nationality)
than other test runs. We can see the differences are due to 1 out of over 100 tracks from
Table 3. This is due to the differences in numerical results as will be discussed further
later on in Section 5.2.3.

5.2 Performance ROC Curves
The tables of metrics shown in the last section only represent the performance of the
algorithms when the thresholds are set to specific values for Nationality and Target Type
according Table 2. To see a comparison of the algorithm across different threshold
settings, we analyze ROC curves.

5.2.1 ROC Basics

We define an ROC curve to be Accuracy as a function of Error. To be consistent with the
common definition of an ROC curve, we label the y axis for Accuracy as “Prob. of
Correct ID”, and the x axis for Error as “Prob. of False ID”. Note that these two metrics
both have as their basis the total population of tracks (see Section 4.4.1).

The ROCs are obtained by setting the ID declaration thresholds at different values and
then evaluating the resulting performance metrics. Therefore each point on the ROC
curve represents an operating point corresponding to a certain threshold. Therefore an
ROC curve represents the system performance at various threshold values. When
comparing two ROCs, the higher and closer to the left the ROC is, the better the system
performance, as the higher curve achieves better correct ID probability at the same false
ID probability than the lower one, and the curve closer to the left achieves lower false ID
probability at the same correct ID probability.

CRA_Eval_Report v4 bjb.doc Page 11 of 20 Source: HRL LLC

5.2.2 ROCs for the New D-S Engine

In the first set of comparisons, we plotted the results of test runs CRA1, CIDER, and
BAA Phase-I. Recall that CRA1 uses the ingest module of CIDER. So this comparison
can tell us whether the new D-S engine matches CIDER. The ROCs for comparison are
shown in Figure 2 and Figure 3 for DS3a and DS3d, respectively. The ROC curves for
Nationality and Target Type are shown in separate plots.

As can be expected, the ROCs for CIDER and BAA Phase-I match exactly in all cases.
CRA1 matches CIDER/BAA Phase-I in most areas across the entire ROCs and only
differ in the tail ends (to the right side) of the ROCs for Nationality on DS3a and Target
Type on DS3d. The tail end of an ROC corresponds to high false ID (error) rates, and
should be avoided during normal operation. Detailed analysis of the run logs suggest that
the differences in the ROC curves in the tail end are due to random swapping of the 1st
and 2nd candidates in the output when the 1st and 2nd candidates have equal probability
values (see Section 4.4.2).

Also note the dashed vertical bars in the ROC plots. The intersection points of the vertical
bars and the ROCs represent the operating points chosen for the performance metric
evaluation in Section 5.1. The intersection points should match the metric values shown
in Table 2. For example, in Figure 2 the vertical dashed bar and the ROCs for Nationality
intersect at (0.027, 0.709). In Table 2, the accuracy under Nationality for DS3a (first
row) is 0.709, and the completeness under Nationality is 0.736. Therefore
0.736-0.709=0.027, which is probability of false ID (or error rate).

CRA_Eval_Report v4 bjb.doc Page 12 of 20 Source: HRL LLC

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Error Rate

A
cc

ur
ac

y

Track-Based ROCs for Nationality for DS3a

CRA1
CIDER
BAA-Phase-I

Pr
ob

. o
f C

or
re

ct
 ID

Prob. of False ID

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Error Rate

A
cc

ur
ac

y

Track-Based ROCs for Target Type for DS3a

CRA1
CIDER
BAA-Phase-I

Pr
ob

. o
f C

or
re

ct
 ID

Prob. of False ID
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Error Rate

A
cc

ur
ac

y

Track-Based ROCs for Target Type for DS3a

CRA1
CIDER
BAA-Phase-I

Pr
ob

. o
f C

or
re

ct
 ID

Prob. of False ID

Figure 2. ROC comparisons for DS3a for Nationality and Type for different test runs. The
dashed vertical bars in the figure indicate the corresponding operating points for the
thresholds set according to those shown in Table 2.

CRA_Eval_Report v4 bjb.doc Page 13 of 20 Source: HRL LLC

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Error Rate

A
cc

ur
ac

y

Track-Based ROCs for Nationality for DS3d

CRA1
CIDER
BAA-Phase-I

Pr
ob

. o
f C

or
re

ct
 ID

Prob. of False ID

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Error Rate

A
cc

ur
ac

y

Track-Based ROCs for Target Type for DS3d

CRA1
CIDER
BAA-Phase-I

Pr
ob

. o
f C

or
re

ct
 ID

Prob. of False ID
Figure 3. ROC comparisons for DS3d for Nationality and Type for different test runs. The
dashed vertical bars in the figure indicate the corresponding operating points for the
thresholds set according to those shown in Table 2.

CRA_Eval_Report v4 bjb.doc Page 14 of 20 Source: HRL LLC

5.2.3 ROCs Using the New Ingest Module

Test run CRA2 uses the new D-S engine and the new ingest module. In the last section,
we have shown that the new D-S engine with CIDER ingest module (i.e., CRA1) matches
in performance with CIDER/BAA Phase-I, test run CRA2 will test the performance of
the new ingest module.

Figure 4 shows the ROCs for CRA2 and CIDER test runs using DS3d. The performance
of CRA2 some times lags that of CIDER and sometimes exceeds it. However, overall the
differences between the ROCs are minor, and the overall performance of the two should
be considered comparable, with CRA2 gaining in areas with low false ID probability, but
loosing in areas when the false ID probability is higher.

Some of the differences can be traced back to the new Ingest Module which fixes some
problems/bugs that exist in CIDER or its set-up. For example, the ID knowledge base file
contains a formatting error in a parameter’s range, which caused the CIDER ingest
module to not having been handling that parameter according to the original algorithm
design. In another example, the CIDER ingest module was not normalizing the confusion
matrix values before some comparison was made, as outlined in the CCID Phase-I final
report [1]. The new Ingest Module fixed both these problems, and therefore we expect it
to produce slightly different results, especially in the actually probability values from the
reasoning due to changes in belief updates.

To be sure we have the new CRA ingest module coded correctly, two special test runs
based on the 2 of the 4 shown in Table 1 were conducted. CRA2-NoNorm is the same as
CRA2, but with a switch turned on to mimic CIDER’s bug of not doing the needed
normalization. CIDER-KB is the same as CIDER but using a knowledge base file with
the formatting error corrected. This way, we can do an apple-to-apple comparison
between CRA2-NoNorm and CIDER-KB. These two addition test runs are summarized
in the table below.
Table 4. New test runs designed to test the equivalence of CRA ingest module to that of
CIDER. See text for details.

Test Runs Description

CIDER-KB Same as CIDER, but using corrected knowledge base file

CRA2-NoNorm Same as CRA2, but with the “normalization” turned off

Figure 5 shows the ROC curves for both Nationality and Target Type for these two test
runs on DS3d. As can be seen, the ROCs for Nationality match exactly. For Target Type,
the curves match exactly on the left side, and only differ slightly in the middle and right
side. We will show in the log comparison section (Section 6) that these differences are
due to random swap discussed in Section 4.4.2.

CRA_Eval_Report v4 bjb.doc Page 15 of 20 Source: HRL LLC

5.3 Summary
In this section, through performance metrics and ROC curve comparisons, we have
shown that both CRA D-S engine and the ingest module produce either identical or
nearly the same performance. The apparent differences in the ROC curves for CRA2 and
CIDER test runs were due to changing set-ups and bug fixes in CRA2. Despite of the
differences, the declaration performance of CRA2 and CIDER should be considered
comparable. We were also able to match the ROC curves when CRA2 and CIDER test
runs are conducted under the same condition. This ensures the implementation is correct.

CRA_Eval_Report v4 bjb.doc Page 16 of 20 Source: HRL LLC

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Prob. of False ID

P
ro

b.
 o

f C
or

re
ct

 ID

Track-Based ROCs for Nationality for DS3d

CRA2
CIDER

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Prob. of False ID

P
ro

b.
 o

f C
or

re
ct

 ID

Track-Based ROCs for Target Type for DS3d

CRA2
CIDER

Figure 4. ROCs comparing CRA2 test run with CIDER. Recall that BAA Phase-I has the
same ROCs as CIDER (see Figure 2 and Figure 3), and so they are not shown here.

CRA_Eval_Report v4 bjb.doc Page 17 of 20 Source: HRL LLC

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Prob. of False ID

P
ro

b.
 o

f C
or

re
ct

 ID

Track-Based ROCs for Nationality for DS3d

CIDER-KB
CRA2-NoNorm

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Prob. of False ID

P
ro

b.
 o

f C
or

re
ct

 ID

Track-Based ROCs for Target Type for DS3d

CRA2-NoNorm
CIDER-KB

Figure 5. ROC comparisons for test runs CRA2-NoNorm and CIDER-KB. These ROCs
shows a match with the results of CIDER and CRA2 under the same condition.

CRA_Eval_Report v4 bjb.doc Page 18 of 20 Source: HRL LLC

6 Run Log Comparisons
The next step in performance evaluation was to take the actual run logs and compare line
by line the differences between the different runs. The purpose of this comparison was to
further analyze the differences observed in the performance comparison presented in the
last section, and to explain the differences observed in the ROCs. In the following, the
findings of log comparisons between pairs of test runs conducted during this evaluation
are presented. As discussed in Section 4.4.2, three different cases of log differences were
identified. Case A and C are not real differences, while Case B produced different results.
For detailed discussion of the methods for run log comparison, please refer to Section
4.4.2.

6.1 CIDER vs. BAA Phase-I
Since CIDER test run is a Unix version of the original CIDER code, we compare it’s run
log with the original run log “BAA Phase-I” to “calibrate” our comparisons with other
test runs for the new CRA. Since the code implementation is the same, any differences
between these two log files can be attributed to the compiler differences. The results of
comparison are presented in the table below.
Table 5. Results of log comparison between CIDER and BAA Phase-I

0
0

TypeNation

0
11

Type

5
12

Type NationNation

0001693DS3d
0

Case C

0

Case B

0

Case A

7527

Total Lines
in the Logs

DS3a

Data

0
0

TypeNation

0
11

Type

5
12

Type NationNation

0001693DS3d
0

Case C

0

Case B

0

Case A

7527

Total Lines
in the Logs

DS3a

Data

As can be seen from the above table, there is no difference between the logs except for
Case A and C for Target Type. As expected, we see zero differences under the column
for Case B. The ROC curves presented in Section 5.2.2 (Figure 2 and Figure 3) also
confirmed this observation.

6.2 CRA1 vs. BAA Phase-I
Results of log comparison between CRA1 and BAA Phase-I are shown in Table 6.
Table 6. Results of log comparison between BAA Phase-I and CRA1

0
0

TypeNation

24
350

Type

4
1

Type NationNation

60141693DS3d
1171

Case C

0

Case B

331

Case A

7527

Total Lines
in the Logs

DS3a

Data

0
0

TypeNation

24
350

Type

4
1

Type NationNation

60141693DS3d
1171

Case C

0

Case B

331

Case A

7527

Total Lines
in the Logs

DS3a

Data

Again, note the absence of any occurrence of Case B differences. However, we observed
many more Case A and Case B differences between CRA1 and BAA Phase-I. These
differences were due to candidate position swapping when the probabilities were equal.

CRA_Eval_Report v4 bjb.doc Page 19 of 20 Source: HRL LLC

As has been shown in Section 5.2, these differences only affect the tail ends of the ROCs
corresponding to high false ID probability, which a normal CID engine designer will
avoid. The cause for the candidate position swapping is due to the different
implementations between the new CRA D-S engine and VBS Kernel in maintaining the
internal list of ID states. Compiler differences may also be a factor, but is a lesser
contributor, as can be seen from the results presented in Section 6.1.

6.3 CRA2 vs. BAA Phase-I and CRA2-NoNorm vs. CIDER-KB
For CRA2 test run, the new Ingest Module and the new D-S engine were used. As
discussed in Section 5.2.3, due to the facts that the CRA ingest module implementation
contained bug fixes and the CRA2 test run uses a format-corrected knowledge base file,
the test run results were different in numerical values (the probabilities). The differences
in the appearance of the ROCs in Figure 4 demonstrated this clearly. In this situation, a
direct comparison of the run logs was no longer meaningful.

Rather than comparing CRA2 and BAA Phase-I logs, we compared the run logs of test
runs CRA2-NoNorm and CIDER-KB described in Section 5.2.3, Table 4. These test runs
are conducted under the same conditions and therefore helped to demonstrate that the
CRA code was implemented correctly according to CIDER’s design. The results are
shown in Table 7.
Table 7. Log comparison results for CRA2-NoNorm and CIDER-KB.

0

TypeNation

35

Type

106

Type NationNation

0031693DS3d

Case CCase BCase A
Total Lines in

the LogsData

0

TypeNation

35

Type

106

Type NationNation

0031693DS3d

Case CCase BCase A
Total Lines in

the LogsData

Clearly, the absence of Case B difference proves that these two test runs match. The Case
A and C differences are the only causes for the slight differences in the ROC shown in
Figure 5.

6.4 Summary
Log comparisons show that porting the CIDER code to Unix platform without
code/algorithm change introduces few differences in the logs due to random swap that do
not affect the performance. The absence of Case B differences in CRA1 and BAA Phase-
I test run logs showed that the CRA D-S engine matched the VBS Kernel D-S engine.
Although we were able to do a meaningful log comparison for CRA2, we were able to
develop special test runs for CRA2 (CRA2-NoNorm) and CIDER (CIDER-KB) that
allowed us to run both ingest modules under the same condition. The results proved the
CRA ingest module does indeed match the CIDER ingest module. This exercise gave us
confidence to say the differences we see in the ROCs between CRA2 and BAA Phase-I
are entirely related to the bug fixes and correction in knowledge base formatting.

CRA_Eval_Report v4 bjb.doc Page 20 of 20 Source: HRL LLC

7 CPU Time, Memory and Processor Usage
Table 8 shows the results of run-time evaluation, with comparable figures from VBS
Kernel. For the evaluation CRA D-S engine, we used the CRA1 test run configuration
with CIDER ingest module and CRA D-S engine. For VBS Kernel, we used the CIDER
test run configuration (see Section 4.5). The CRA ingest module is not included in this
part of the evaluation since it takes much less CPU time and memory compared to those
taken by either CRA D-S engine or the VBS Kernel.
Table 8. Results for timing, memory and processor usage for the CRA D-S engine. For these
results, the test run configuration of “CRA1” was used and only the CRA D-S engine
processes was evaluated.

92

92

CRA D-S
Engine

Processor
Utilization (%)

83

97

VBS
Kernel

VBS
Kernel

CRA D-S
Engine

VBS
Kernel

CRA D-S
Engine

115

159

960:12:57 /
0:15:41

0:3:2 /
0:3:18DS3d

656:55:50 /
7:11:29

0:5:24 /
0:5:54DS3a

Peak Memory (MB)
CPU time/Elapsed time
(hour:minute:second)Data

92

92

CRA D-S
Engine

Processor
Utilization (%)

83

97

VBS
Kernel

VBS
Kernel

CRA D-S
Engine

VBS
Kernel

CRA D-S
Engine

115

159

960:12:57 /
0:15:41

0:3:2 /
0:3:18DS3d

656:55:50 /
7:11:29

0:5:24 /
0:5:54DS3a

Peak Memory (MB)
CPU time/Elapsed time
(hour:minute:second)Data

As can be seen that the CRA D-S engine is much faster than the VBS Kernel, and also
more efficient in memory usage. The timing comparison on DS3a is especially dramatic,
with CRA D-S engine achieving more than 75 times the speed of that for VBS Kernel.

8 Conclusion
We have described our objectives, approaches and results of the CRA Evaluation task
under the CRA Development program. Through careful design and planning of the
evaluation process, analysis tools, and the lengthy process of conducting the evaluation
tests and result analysis, we can conclude that the new CRA is a functional equivalent of
the CIDER engine developed under CCID Phase-I program. The new CRA achieves the
same CID performance metric values as CIDER does, and produces equivalent
performance as evaluated through various ROC curves and performance metrics. The
new CRA D-S engine is also much faster, achieving 4 to 75 times speed up compared to
CIDER as evaluated based on DS3a and DS3d data sets from CCID Phase-I program. It
also consumes appreciably less memory (sometimes less than an half) than the memory
required by VBS Kernel.

Reference
[1] Barbara Blyth and Yang Chen, “ONR CCID Program (BAA-01-024) Final Report”

by Raytheon Co. and HRL Laboratories, LLC, October 2002.

